If cos a = 12/13 then find the value of 1/(1 + sin^25 a) + 1/( 1+ cos^25 a)
Answers
Given:
Given the value of cosA = 12/13
To Find:
The expression :
1/(1+sin²5A) + 1/(1+cos²5A)
Solution:
We should first find the value of sin5A .
Using the following formula for sin(A+B) ,
- sin5A = sin (2A + 3A)
- sin (2A + 3A) = sin2Acos3A + cos2Asin3A
Given cos A = 12/13, Therefore
- sin A = 5/13
We know the value of sin2A = 2sinAcosA
- sin2A = 2 x 5 x 12 / 13 x 13 = sin2A = 120/169
- cos2A = √1-sin²2A = √1 - 120²/169² =√ (169-120)(120+169)/169
- cos2A = √49x289/169 = 7x17/169 = 119/169
Also, sin3A = sin(2A+A) = sin2AcosA + cos2AsinA
- sin3A = 120 x 12/169 x 13 + 119 x 5/169 x 13
- sin3A =(1440 + 595 )/13³
- sin3A = 2035/2197
- cos3A = √1-sin²3A = √(2197-2035)(2197+2035)/2197
- cos3A = 828/13³
Now we need to find sin5A = sin3Acos2A + sin2Acos3A = 2035x119/ + 120x828/
- sin5A = (242165 + 99360)/371293 =341525/371293 = 0.9198
- cos5A = √1- sin²5A = √(371293-341525)(371293+341525)/371293
- cos5A = 145668/371293 = 0.39
Therefore sin10A = 2sin5Acos5A
- sin5Acos5A = 0.36
Now
- 1/(1+sin²5A) + 1/(1+cos²5A) = (1+ cos²5A + 1 + sin²5A)/(1+sin²5A)(1+cos²5A) =>
- 3/(1 + sin²5A + cos²5A + (sin5Acos5A)²
- ==>
- 3/(2+0.1296)
- 3/2.1296
- The answer = 1.41
Therefore the value of the expression 1/(1+sin²5A) + 1/(1+cos²5A) is equal to 1.41
1/(1 + sin² 5a) + 1/( 1 + cos² 5a) = 1.41
Step-by-step explanation:
sin 5a = sin (2a + 3a)
On applying sin(A + B) = (sin A × cos B) + (cos A × sin B)
sin (2a + 3a) = (sin 2a × cos 3a) + (cos 2a × sin 3a)
From question, cos a = 12/13 whereas sin a = 5/13
sin 2a = 2 sin a × cos a
sin 2a = 2 × 12/13 × 5/13
∴ sin 2a = 120/169
cos 2a = √(1 - sin² 2a) = √(1 - 120²/169²) =√((169-120)(120+169))/169
cos 2a = √(49 × 289)/169 = (7 × 17)/169
∴ cos 2a = 119/169
On applying sin 3A = sin(2A + A) = (sin2A × cosA) + (cos2A × sinA )
sin 3a = (120/169 × 12/13) + (119/169 × 5/13 )
sin 3a =(1440 + 595)/13³
∴ sin 3a = 2035/2197
cos 3a = √1 - sin² 3a = √(1 - 2035²/2197²) = √(2197-2035)(2197+2035)/2197
∴ cos 3a = 828/13³
On applying sin 5A = (sin 3A × cos 2A) + (sin 2A × cos 3A)
sin 5a = (2035 × 119/13⁵) + (120 × 828/13⁵)
sin 5a = (242165 + 99360)/371293 = 341525/371293
∴ sin 5a = 0.9198
cos 5a = √(1- sin² 5a) = √(371293 - 341525)(371293 + 341525)/371293
cos 5a = 145668/371293
∴ cos 5a = 0.39
Therefore sin 10A = 2 sin 5A × cos 5A
sin 5A × cos 5A = 0.36
Now,
1/(1 + sin²5A) + 1/(1 + cos²5A) = (1 + cos² 5A + 1 + sin² 5A)/(1 + sin² 5A)(1 + cos² 5A)
1/(1 + sin²5A) + 1/(1 + cos²5A) = 3/(1 + sin²5A + cos²5A + (sin5Acos5A)²
1/(1 + sin²5A) + 1/(1 + cos²5A) = 3/(2+0.1296)
∴ 1/(1 + sin²5A) + 1/(1 + cos²5A) = 3/2.1296 = 1.41