if cos A=12/13 then tan A
Answers
Answered by
5
cosA = 12/13
Base / Hypotenuse= 12/13
Now, tanA= perpendicular/base
= perpendicular/12
Now perpendicular= ??
So, by Pythagoras theorem
(13)^2 = (12)^2+ perpendicular
169=144 +per
(per )^2= 169 -144
(per) ^2= 25
per = √25
perpendicular= 5
tan A = 5 /12
Base / Hypotenuse= 12/13
Now, tanA= perpendicular/base
= perpendicular/12
Now perpendicular= ??
So, by Pythagoras theorem
(13)^2 = (12)^2+ perpendicular
169=144 +per
(per )^2= 169 -144
(per) ^2= 25
per = √25
perpendicular= 5
tan A = 5 /12
Answered by
0
Heya☺
We know that ,
tan a = sina / cosa
tana = √1- cos^2a / cosa. ( sin^2a + cos^2a = 1)
tana = √1 - (12/13)^2 / 12/13
tana = √1 - 144/169 /12/13
tana = (√ 169 -144 ÷ 169 ) ÷ 12/13
tana = √25 /169 × 13/12
tana = 5/13 × 13/12
tana = 5/12
We know that ,
tan a = sina / cosa
tana = √1- cos^2a / cosa. ( sin^2a + cos^2a = 1)
tana = √1 - (12/13)^2 / 12/13
tana = √1 - 144/169 /12/13
tana = (√ 169 -144 ÷ 169 ) ÷ 12/13
tana = √25 /169 × 13/12
tana = 5/13 × 13/12
tana = 5/12
Similar questions