Math, asked by lovelyads24, 11 months ago

if cos A=12 by 13 find the value of cot A​

Answers

Answered by sharonr
2

If cos A=12 by 13 then the value of cot A​ is \frac{13}{25}

Solution:

Given that,

\cos A=\frac{12}{13}  ---- eqn 1

To find: The value of cot A

\cos \theta=\frac{\text { base }}{\text { hypotenuse }}  ----- eqn 2

By comparing eqn 1 and eqn 2 we get,

Thus base = 12 and hypotenuse = 13

By Pythagoras theorem, we get

\begin{array}{l}{\text { Hypotenuse }^{2}=\text { perpendicular }^{2}+\text { base }^{2}} \\\\ {\text { perpendicular }^{2}=\text { Hypotenuse }^{2}-\text { base }^{2}}\end{array}

\begin{array}{l}{=13^{2}-12^{2}} \\\\ {=169-144} \\\\ {=25}\end{array}

Thus perpendicular = 25

Now we have to find the value of cot A

\cot A=\frac{\text { base }}{\text { Perpendicular }}

Plugging in values we get,

\cot A=\frac{13}{25}

Thus the value of cot A is found

Learn more about trignometry

If cosA=12/13, then find Sina and tanA

https://brainly.in/question/980924

If cos A=12/13 then tan A

https://brainly.in/question/3122357

Answered by suchindraraut17
3

cotA= 12/5

Step-by-step explanation:

We know that,

In a right angle triangle ABC,where A is a right angle,

cos A=Base/Hypotenuse

cosA=12/13

On applying Pythagoras theorem in ΔABC,

(Hypotenuse)^2=(Perpendicular)^2+(Base)^2

(13)^2=(Perpendicular)^2+(12)^2

169=(Perpendicular)^2+144

(Perpendicular)^2=169-144

                             =25

On taking Square root,

Perpendicular= 5

Now,

cotA= Base/Perpendicular

       =12/5

Similar questions