Math, asked by narendran9, 7 months ago

if cos a = 2/5 find 2cosa sina​

Answers

Answered by MoodyCloud
4
  • 2 cos A sin A = 4√21/5.

Step-by-step explanation:

To find:-

  • Vale of 2 cos A sin A .

Solution:-

Given that,

cos A = 2/5

◆ cos θ = Base/Hypotenuse

Base = 2

Hypotenuse = 5

◆ sin θ = Perpendicular/Hypotenuse

  • We do not have Perpendicular.

According to Pythagoras theorem

Perpendicular² = Hypotenuse² - Base²

➝ Perpendicular² = (5)² - (2)²

➝ Perpendicular² = 25 - 4

➝ Perpendicular² = 21

➝ Perpendicular = √21

Sin A = Perpendicular/Hypotenuse

Sin A = 21/5

We want ,

➝ 2 cos A sin A

➝ 2 × 2/5 × √21/5

➝ 4√21/5

Therefore,

2 cos A sin A = 421/5.

___________________

More ratio's:-

  • tan θ = Perpendicular/Base.
  • cot θ = Base/Perpendicular.
  • Sec θ = Hypotenuse/Base.
  • Cosec θ = Hypotenuse/Perpendicular.
Answered by Anonymous
11

\large{ \sf \underline{ \blue{ ╬ \:  Question\:  ╬}}} </h2><h2>

if cos a = 2/5 find 2cosa sina.

\large{ \sf \underline{ \blue{ ╬ \:  find \:   ╬}}}

2cosa.sina=?

\large{ \sf \underline{ \blue{ ╬ \:  given \: that \:   ╬}}}

Cos a = 2/5

\large{ \sf \underline{ \blue{ ╬ \:  solution \:  ╬}}}

We know that cos = b/h

so here

hypotenuse (h) =5

base (b) =2

perpendicular (p) = ?

__________________

Now by using Pythagoras theorem .

 \bf H^2 =B^2+P^2 \\ </h3><h3> \bf \ P^2= (5)^2-(2)^2 \\ </h3><h3> \bf P^2 = 25 -4 \\ </h3><h3> \bf P^2 = 21 \\ </h3><h3> \bf P =√21

After that

We know that

  • sin a = p/h

so sin a = √21/5

\large{ \sf \underline{ \pink{ ╬ \:  putting \: the \: value \: of \: cos \: a \: \:  and\:  \: sin \: a ╬ \:  \: }}} </p><p>

☞ 2 x 2/5 × √21/5

☞= 4√21/25

Similar questions