if cos A=2/5, find the value of 4+4 tan square A
Answers
Answered by
2
cosA=2:5
cos^2A=4:25
sin^2A + cos^2=1
sin^A=1-4/25
sin^2A=21/25
sinA=ROOT21/5
tanA=sinA/cosA
2/5DIVIDE BY root 21/5
tanA=2/ROOT21
4*tanA=8/root21
4+4tanA=4+8/ROOT21
=4ROOT21+8/ROOT 21
= 4*ROOT21+8/ROOT21
root21 is cancelled
therefore
4+4tanA=12
cos^2A=4:25
sin^2A + cos^2=1
sin^A=1-4/25
sin^2A=21/25
sinA=ROOT21/5
tanA=sinA/cosA
2/5DIVIDE BY root 21/5
tanA=2/ROOT21
4*tanA=8/root21
4+4tanA=4+8/ROOT21
=4ROOT21+8/ROOT 21
= 4*ROOT21+8/ROOT21
root21 is cancelled
therefore
4+4tanA=12
shailendrawaskar11:
how to edit the answer
Answered by
0
4+4tanA^2
4(1+tanA^2)
4(secA^2) [•°• 1+tanA^2=Sec^2]
4(1/cosA)^2 [•°• secA=1/cosi hope its help u
Plz mark as brainlist
4(1+tanA^2)
4(secA^2) [•°• 1+tanA^2=Sec^2]
4(1/cosA)^2 [•°• secA=1/cosi hope its help u
Plz mark as brainlist
Attachments:
Similar questions