Math, asked by Devesh4745, 2 days ago

If cos A = 21 29 , calculate sin A

Answers

Answered by anindyaadhikari13
5

Solution:

Given That:

 \rm \longrightarrow \cos \alpha  =  \dfrac{21}{29}

We know that:

 \rm \longrightarrow \sin^{2}  \alpha + \cos^{2} \alpha = 1

Therefore:

 \rm \longrightarrow \sin^{2}  \alpha = 1 -  \cos^{2} \alpha

 \rm \longrightarrow \sin\alpha = \sqrt{ 1 -  \cos^{2} \alpha}

Substituting the value of cos α, we get:

 \rm \longrightarrow \sin\alpha = \sqrt{ 1 - \dfrac{ {21}^{2} }{ {29}^{2} } }

 \rm \longrightarrow \sin\alpha = \sqrt{ \dfrac{  {29}^{2} -  {21}^{2} }{ {29}^{2} } }

 \rm \longrightarrow \sin\alpha = \sqrt{ \dfrac{841- 441}{ {29}^{2} } }

 \rm \longrightarrow \sin\alpha = \sqrt{ \dfrac{400}{ {29}^{2} } }

 \rm \longrightarrow \sin\alpha = \sqrt{ \dfrac {{20}^{2} }{ {29}^{2} } }

 \rm \longrightarrow \sin\alpha = \dfrac {20}{29}

★ Which is our required answer.

Additional Information:

1. Relationship between sides and T-Ratios.

  • sin θ = Height/Hypotenuse
  • cos θ = Base/Hypotenuse
  • tan θ = Height/Base
  • cot θ = Base/Height
  • sec θ = Hypotenuse/Base
  • cosec θ = Hypotenuse/Height

2. Square formulae.

  • sin²θ + cos²θ = 1
  • cosec²θ - cot²θ = 1
  • sec²θ - tan²θ = 1

3. Reciprocal Relationship.

  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ
  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • tan θ = 1/cot θ

4. Cofunction identities.

  • sin(90° - θ) = cos θ
  • cos(90° - θ) = sin θ
  • cosec(90° - θ) = sec θ
  • sec(90° - θ) = cosec θ
  • tan(90° - θ) = cot θ
  • cot(90° - θ) = tan θ

5. Even odd identities.

  • sin -θ = -sin θ
  • cos -θ = cos θ
  • tan -θ = -tan θ
Similar questions