Math, asked by sairajchoudhury12345, 5 months ago

If cos a + 2cos b + cos c = 2 then a, b, c
are in​

Answers

Answered by shravan2028
0

ANSWER

Given:cosA+2cosB+cosC=2

⇒cosA+cosC=2−2cosB

Using transformation angle formulae, we have

⇒2cos(

2

A+C

)cos(

2

A−C

)=2(1−cosB)

Using multiple angle formula, we get

⇒2cos(

2

A+C

)cos(

2

A−C

)=2.2sin

2

(

2

B

)

We have A+B+C=π⇒.A+C=π−B⇒

2

A+C

=

2

π

2

B

⇒2cos(

2

π

2

B

)cos(

2

A−C

)=2.2sin

2

(

2

B

)

⇒2sin(

2

B

)cos(

2

A−C

)=2.2sin

2

(

2

B

)

⇒cos(

2

A−C

)=2sin(

2

B

)

⇒cos(

2

A−C

)=2sin(

2

π

2

A+C

)

⇒cos(

2

A−C

)=2cos(

2

A+C

)

cos(

2

A+C

)

cos(

2

A−C

)

=

1

2

By componendo and dividendo method,

cos(

2

A−C

)+cos(

2

A+C

)

cos(

2

A−C

)−cos(

2

A+C

)

=

2+1

2−1

2cos(

2

A−C+A+C

)cos(

2

A−C−A−C

)

−2sin(

2

A−C+A+C

)sin(

2

A−C−A−C

)

=

3

1

cos(

2

A

)cos(

2

C

)

sin(

2

A

)sin(

2

C

)

=

3

1

⇒tan(

2

A

)tan(

2

C

)=

3

1

s(s−a)

(s−b)(s−c)

s(s−c)

(s−a)(s−b)

=

3

1

s

s−b

=

3

1

⇒3s−3b=s

⇒2s=3b

We know that a+b+c=2s

∴a+b+c=3b

Hence,a+c=2b

∴a,b,c are in A.P

Answered By

Similar questions