Math, asked by sahaa72, 1 year ago

If cos A=2x/1+xsquare then find the values of sinA and tanA in terms of x

Answers

Answered by MaheswariS
27

Given:

cosA=\frac{2x}{1+x^2}

\text{Take, $x=tan\theta$}

cosA=\frac{2\,tan\theta}{1+tan^2\theta}

cosA=sin2\theta

cosA=cos(90^{\circ}-2\theta)

\implies\;A=90^{\circ}-2\theta

Now,

sinA

=sin(90^{\circ}-2\theta)

=cos2\theta

=\frac{1-tan^2\theta}{1+tan^2\theta}

=\frac{1-x^2}{1+x^2}

\implies\:\boxed{\bf\,sinA=\frac{1-x^2}{1+x^2}}

tanA

=tan(90^{\circ}-2\theta)

=cot2\theta

=\frac{1}{tan2\theta}

=\frac{1}{2tan\theta/1-tan^2\theta}

=\frac{1-tan^2\theta}{2tan\theta}

=\frac{1-x^2}{2x}

\implies\:\boxed{\bf\,tanA=\frac{1-x^2}{2x}}

Similar questions