Math, asked by dangiprapti, 3 days ago

If cos a/3 = 1/2 (p+1/2), prove that cos a=1/2(p^3+1/p^3)
 \cos \frac{ \alpha }{3}  =  \frac{1}{2} (p +  \frac{1}{p} )

 \cos( \alpha )  =  \frac{1}{2} ({p}^{3}  +  \frac{1}{ {p}^{3} } )

Answers

Answered by jitendra12iitg
1

Answer:

See the explanation

Step-by-step explanation:

Given

       \cos\frac{\alpha}{3}=\frac{1}{2}(p+\frac{1}{p})

Therefore using \cos(3\theta)=4\cos^3\theta-3\cos\theta

    \cos\alpha=\cos3(\frac{\alpha}{3})=4\cos^3(\frac{\alpha}{3})-3\cos(\frac{\alpha}{3})

                              =4(\frac{1}{8}(p+\frac{1}{p})^3)-3(\frac{1}{2}(p+\frac{1}{p}))\\\\=\frac{1}{2}(p+\frac{1}{p})^3)-\frac{3}{2}(p+\frac{1}{p})\\\\=\frac{1}{2}(p^3+\frac{1}{p^3}+3p\times \frac{1}{p}(p+\frac{1}{p})-3(p+\frac{1}{p}))\\\\=\frac{1}{2}(p^3+\frac{1}{p^3}+3(p+\frac{1}{p})-3(p+\frac{1}{p}))\\=\frac{1}{2}(p^3+\frac{1}{p^3})

Hence proved

Similar questions