if cos A = 3/5 evaluate 5 sin A + 3sec A - 3tan A / 4 cot A + 4 cosec A +. 5 cos A
Answers
Given :
cos A = 3/5
To Find:
5 sin A + 3sec A - 3tan A / 4 cot A + 4 cosec A +5 cos A
Solution :
First step find the value for sin A, sec A , tan A, cot A , cosec A.
we know that,
cos A = 3/5 = adjacent side / hypotenuse side ,
now find the opposite side,
BC ² = AC² - AB²
BC²= 5²-3²
BC² = 25-9
BC²=16
BC =√16
BC = 4 cm(opposite side)
Now ,
★ sin A
sin A = opposite side/ hypotenuse side
sin A = BC /AC = 4/5
★sec A
sec A is reciprocal of cosA
sec A = 1/ cosA = 1/3/5 = 5/3
★tan A = opposite side/ adjacent side
•°• tan A = 4/3
★cot A is reciprocal of tan A
•°• cot A = 3/4
★ cosec A is reciprocal of sinA
•°•cosec A = 5/4
Second step , substitute all the value in the given form :
Refer the attachment for the image !!
Step-by-step explanation:
\bf \large \underline{Answer:}
Answer:
Given :
cos A = 3/5
To Find:
5 sin A + 3sec A - 3tan A / 4 cot A + 4 cosec A +5 cos A
Solution :
First step find the value for sin A, sec A , tan A, cot A , cosec A.
we know that,
cos A = 3/5 = adjacent side / hypotenuse side ,
now find the opposite side,
BC ² = AC² - AB²
BC²= 5²-3²
BC² = 25-9
BC²=16
BC =√16
BC = 4 cm(opposite side)
Now ,
★ sin A
sin A = opposite side/ hypotenuse side
sin A = BC /AC = 4/5
★sec A
sec A is reciprocal of cosA
sec A = 1/ cosA = 1/3/5 = 5/3
★tan A = opposite side/ adjacent side
•°• tan A = 4/3
★cot A is reciprocal of tan A
•°• cot A = 3/4
★ cosec A is reciprocal of sinA
•°•cosec A = 5/4
Second step , substitute all the value in the given form :
\begin{gathered} : \implies \tt \pink{\frac{5 \: sin \:A + 3 \: sec \: A - 3 \: tan \:A }{4 \: cot \:A + 4 \: cosec \:A + 5 \: cos \: A} } \\ \end{gathered}
:⟹
4cotA+4cosecA+5cosA
5sinA+3secA−3tanA
\begin{gathered} : \implies \tt \pink{ \frac{5( \frac{4}{5}) + 3( \frac{5}{3}) - 3( \frac{4}{3} ) }{4( \frac{3}{4} ) + 4( \frac{5}{4}) + 5( \frac{3}{5}) } } \\ \end{gathered}
:⟹
4(
4
3
)+4(
4
5
)+5(
5
3
)
5(
5
4
)+3(
3
5
)−3(
3
4
)
\begin{gathered} : \implies \tt \pink{ \frac{ \cancel5( \frac{4}{ \cancel5}) + \cancel3( \frac{5}{\cancel3}) - \cancel3( \frac{4}{\cancel3} ) }{\cancel4( \frac{3}{\cancel4} ) + \cancel4( \frac{5}{\cancel4}) + \cancel5( \frac{3}{\cancel5}) } } \\ \end{gathered}
:⟹
4
(
4
3
)+
4
(
4
5
)+
5
(
5
3
)
5
(
5
4
)+
3
(
3
5
)−
3
(
3
4
)
\begin{gathered} : \implies \tt \pink{ \frac{4 + 5 - 4}{3 + 5 + 3}} \\ \end{gathered}
:⟹
3+5+3
4+5−4
\begin{gathered} : \implies \tt \pink{ \frac{5}{11}} \\ \end{gathered}
:⟹
11
5
\begin{gathered} \therefore{ \boxed{\tt {\purple{\frac{5 \: sin \:A + 3 \: sec \: A - 3 \: tan \:A }{4 \: cot \:A + 4 \: cosec \:A + 5 \: cos \: A } = \frac{5}{11} } }}} \\ \end{gathered}
∴
4cotA+4cosecA+5cosA
5sinA+3secA−3tanA
=
11
5
Refer the attachment for the image !!