if cos A=3/5,then write the value of sin 2A
Answers
Solution :-
Given ,
- cosA = 3/5
We need to find ,
- sin2A
Firstly finding the opposite side of angle A
So , using Pythagoras theorem ,
→ Hypotenuse² = Base² + Height²
→ 5² = Base² + 3²
→ 25 - 9 = Base²
→ Base = √16
→ Base = 4
Now finding , sinA
→ sinA = Opposite/Hypotenuse
→ sinA = 4/5
Now finding , sin2A
As we know that ,
♦ sin2A = 2sinAcosA
♦ sin2A = 2 × ( 4/5 ) × ( 3/5 )
♦ sin2A = 24/25
Hence , sin2A = 24/25
Solution :
Given ,
- cosA = 3/5
We need to find ,
- sin2A
Firstly finding the opposite side of angle A
So , using Pythagoras theorem ,
→ Hypotenuse² = Base² + Height²
→ 5² = Base² + 3²
→ 25 - 9 = Base²
→ Base = √16
→ Base = 4
Now finding , sinA
→ sinA = Opposite/Hypotenuse
→ sinA = 4/5
Now finding , sin2A
As we know that ,
♦ sin2A = 2sinAcosA
♦ sin2A = 2 × ( 4/5 ) × ( 3/5 )
♦ sin2A = 24/25
Hence , sin2A = 24/25
________________________________