Math, asked by morngrashi5217, 6 months ago

If cos A =5/13 and A lies A in 4th quadrant. Find the value of 13sin A+5 sec A÷5tan A+6 cosec A

Answers

Answered by thriveda
0

Step-by-step explanation:

\textbf{Given:}Given:

\text{$cosA=\dfrac{5}{13}$ and A is in 4 th quadrant}cosA=

13

5

and A is in 4 th quadrant

\textbf{To find:}To find:

\text{The value of $\dfrac{13\,sinA+5\,secA}{5\,tanA+6\,cosecA}$}The value of

5tanA+6cosecA

13sinA+5secA

\textbf{Solution:}Solution:

\text{Consider,}Consider,

sin^2A=1-cos^2Asin

2

A=1−cos

2

A

sin^2A=1-(\dfrac{5}{13})^2sin

2

A=1−(

13

5

)

2

sin^2A=1-\dfrac{25}{169}sin

2

A=1−

169

25

sin^2A=\dfrac{169-25}{169}sin

2

A=

169

169−25

sin^2A=\dfrac{144}{169}sin

2

A=

169

144

sinA=\pm\,\dfrac{12}{13}sinA=±

13

12

\text{Since A lies in 4 th quadrant, $sinA$ is negative}Since A lies in 4 th quadrant, sinA is negative

\implies\,sinA=\dfrac{-12}{13}⟹sinA=

13

−12

tanA=\dfrac{sinA}{cosA}tanA=

cosA

sinA

=\dfrac{\dfrac{-12}{13}}{\dfrac{5}{13}}=

13

5

13

−12

=\dfrac{-12}{5}=

5

−12

\text{Now}Now

\dfrac{13\,sinA+5\,secA}{5\,tanA+6\,cosecA}

5tanA+6cosecA

13sinA+5secA

=\dfrac{13(\frac{-12}{13})+5(\frac{13}{5})}{5(\frac{-12}{5})+6(\frac{-13}{12})}=

5(

5

−12

)+6(

12

−13

)

13(

13

−12

)+5(

5

13

)

=\dfrac{-12+13}{-12-\frac{13}{2}}=

−12−

2

13

−12+13

=\dfrac{1}{\frac{-24-13}{2}}=

2

−24−13

1

=\dfrac{1}{\frac{-37}{2}}=

2

−37

1

=\dfrac{-2}{37}=

37

−2

\textbf{Answer:}Answer:

\textbf{The value of $\bf\dfrac{13\,sinA+5\,secA}{5\,tanA+6\,cosecA}$ is $\bf\dfrac{-2}{37}$}The value of

5tanA+6cosecA

13sinA+5secA

is

37

−2

Find more:

1.If 6 tan A -5 = 0 find the value of( 3 Sin A - Cos A) / (5 Cos A + 9 sin A)

https://brainly.in/question/5331430

2.CotA+cosecA=3,then find sinA=?

https://brainly.in/question/14998903#

3.If 13 sin A= 12 find sec A - tan A

please mark me branlist

Similar questions