Math, asked by sasusuhu904, 3 days ago

If cos A = 7/25 (3pi)/2 < A < 2 pi and , then find the value of cot A / 2 .​

Answers

Answered by amannscharlie
1

  • refer attachment for detailed answers

  • taking in mind in 4th quadrant sign will be - for cot and tan
Attachments:
Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\dfrac{3\pi}{2}  &lt; A &lt; 2\pi

and

\rm :\longmapsto\:cosA = \dfrac{7}{25}

Now, we know that,

 \purple{\rm :\longmapsto\:\boxed{\tt{ cos2x =  \frac{1 -  {tan}^{2}x}{1 +  {tan}^{2}x}}}} \\

So, using this, we get

\rm :\longmapsto\:\dfrac{1 -  {tan}^{2} \dfrac{A}{2} }{1 + {tan}^{2} \dfrac{A}{2}}  = \dfrac{7}{25}

\rm :\longmapsto\:7 + 7{tan}^{2} \dfrac{A}{2} = 25 - 25{tan}^{2} \dfrac{A}{2}

\rm :\longmapsto\:7{tan}^{2} \dfrac{A}{2} + 25{tan}^{2} \dfrac{A}{2} = 25 - 7

\rm :\longmapsto\:32{tan}^{2} \dfrac{A}{2} = 18

\rm :\longmapsto\:16{tan}^{2} \dfrac{A}{2} = 9

\rm :\longmapsto\:{tan}^{2} \dfrac{A}{2} = \dfrac{9}{16}

\bf\implies \:{tan}\dfrac{A}{2} =  \:  \pm \: \dfrac{3}{4}

Now, As

\rm :\longmapsto\:\dfrac{3\pi}{2}  &lt; A &lt; 2\pi

\rm\implies \:\dfrac{3\pi}{4}  &lt;  \dfrac{A}{2}  &lt; \pi

\rm\implies  \: \dfrac{A}{2}   \:  \in \:  {2}^{nd}  \: quadrant

\rm\implies  \: tan\dfrac{A}{2}    &lt; 0

\bf\implies \:tan \dfrac{A}{2} \:  =  \:  -  \: \dfrac{3}{4}

\bf\implies \:cot \dfrac{A}{2} \:  =  \:  -  \: \dfrac{4}{3}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\boxed{\tt{ sin2x = 2sinxcosx =  \frac{2tanx}{1 +  {tan}^{2} x}}}

\boxed{\tt{ cos2x =  {2cos}^{2}x - 1 = 1 -  {2sin}^{2}x}}

\boxed{\tt{ cos2x =  {cos}^{2}x -  {sin}^{2}x =  \frac{1 -  {tan}^{2}x}{1 +  {tan}^{2}x}}}

\boxed{\tt{ tan2x =  \frac{2tanx}{1 -  {tan}^{2}x }}}

\boxed{\tt{ 1 - cos2x =  {2sin}^{2}x}}

\boxed{\tt{ 1 + cos2x =  {2cos}^{2}x}}

Similar questions