If cos A=7/25 and 3π/2<2π, then find the value of cotA/2.
Answers
Answered by
0
Step-by-step explanation:
⟹cot
2
A
=
1−cosθ
1+cosθ
\sf{\implies \cot \dfrac{A}{2} = \sqrt{\dfrac{1 + \dfrac{7}{25} }{1 - \dfrac{7}{25} } }}⟹cot
2
A
=
1−
25
7
1+
25
7
\sf{\implies \cot \dfrac{A}{2} = \sqrt{\dfrac{ \dfrac{25 + 7}{25} }{\dfrac{25 - 7}{25} } }}⟹cot
2
A
=
25
25−7
25
25+7
\sf{\implies \cot \dfrac{A}{2} = \sqrt{\dfrac{ \dfrac{32}{25} }{\dfrac{18}{25} } }}⟹cot
2
A
=
25
18
25
32
\sf{\implies \cot \dfrac{A}{2} = \sqrt{\dfrac{\cancel{32}}{\cancel{18} } }}⟹cot
2
A
=
18
32
\sf{\implies \cot \dfrac{A}{2} = \sqrt{\dfrac{16}{4} }}⟹cot
2
A
=
4
16
\sf{\implies \cot \dfrac{A}{2} = \pm \dfrac{4}{2} }⟹cot
2
A
=±
2
4
Similar questions
Social Sciences,
4 months ago
Science,
4 months ago
Physics,
4 months ago
Chemistry,
9 months ago
Computer Science,
9 months ago