Math, asked by saurajbhagat40, 1 year ago

if cos A 8/17, then show that 3-4sin2A/4cos2a-3=3-tan2a/1-3tan2a

every 2 is square

Answers

Answered by Anonymous
1

Answer:

Step-by-step explanation:

cosA=8/17

then sin²A=1-cos²A

=1-(8/17)²

=1-64/289

=(289-64)/289

=225/289

Hence sinA=√225/289=15/17

============================

Now the given expression:

(3-4sin²A) / (4cos²A-3) =3-tan²A/1-3tan²A

LHS =3-4(15/17)²/4(8/17)² - 3

=3-4×(225/289)/4×(64/289) - 3

={(867-900)/289}/{(256-867)/289}

=-33/289 × 289/-611

= 33/611

R.H.S = (3-tan²A)/(1-3tan²A)

= 3-(15/8)²/1-3(15/8)²

= 3 - (255/64)/1 - (675/64)

= -33/64 × 64/-611

= 33/611

LHS= RHS

proved

Similar questions