If cos ( A + B ) = 0 and cot ( A – B ) = √3, find the value of:
a) sec A tan B – cot A sin B
b) cosec A cot B + sin A tan B
Answers
hope it helps you :)......
Step-by-step explanation:
Solution :-
Given ,
- cos( A + B ) = 0
- cot( A - B ) = √3
We need to find ,
- secA tanB - cotA sinB
- cosecA cotB - sinA tanB
If ,
• cos( A + B ) = 0
Substituting 0 = cos90°
→ cos( A + B ) = cos90°
→ A + B = 90°
→ A = 90° - B …eq(1)
• cot( A - B ) = √3
Substituting √3 = cot30°
→ cot( A - B ) = cot30°
→ A - B = 30°
→ A = 30° + B …eq(2)
Now , from equation 1 & 2
• 30° + B = 90° - B
• 90° - 30° = B + B
• 60° = 2B
• B = 60°/2
• B = 30°
Now , finding angle A using eq(1)
• A = 90° - B
Substituting value of angle B
• A = 90° - 30°
• A = 60°
Now , coming to the question
◉ secA tanB - cotA sinB
Substituting the values of angles A & B
⇒ sec60° tan30° - cot60° sin30°
⇒ 2(1/√3) - (1/√3)(1/2)
⇒ 2/√3 - 1/2√3
⇒ 4 - 1/2√3
⇒ 3/2√3
By Rationalizing the denominator
⇒ 3(2√3)/(2√3)(2√3)
⇒ 6√3/4(3)
⇒ 6√3/12
⇒ secA tanB - cotA sinB = √3/2
◉ cosecA cotB + sinA tanB
Substituting the values of angles A & B
⇒ cosec60° cot30° + sin60° tan30°
⇒ 2/√3 ( √3 ) + √3/2 ( 1/√3)
⇒ 2 + 1/2
⇒ ( 4 + 1/2)
⇒ cosecA cotB + sinA tanB = 5/2