Math, asked by chinuabhi2005, 7 months ago

If cos ( A + B ) = 0 and cot ( A – B ) = √3, find the value of:

a) sec A tan B – cot A sin B

b) cosec A cot B + sin A tan B​

Answers

Answered by DynamicNinja
16

hope it helps you :)......

Step-by-step explanation:

\large\rm

Attachments:
Answered by ItzArchimedes
25

Solution :-

Given ,

  • cos( A + B ) = 0
  • cot( A - B ) = √3

We need to find ,

  • secA tanB - cotA sinB
  • cosecA cotB - sinA tanB

If ,

• cos( A + B ) = 0

Substituting 0 = cos90°

→ cos( A + B ) = cos90°

A + B = 90°

A = 90° - B eq(1)

• cot( A - B ) = √3

Substituting 3 = cot30°

→ cot( A - B ) = cot30°

A - B = 30°

A = 30° + B eq(2)

Now , from equation 1 & 2

• 30° + B = 90° - B

• 90° - 30° = B + B

• 60° = 2B

• B = 60°/2

B = 30°

Now , finding angle A using eq(1)

• A = 90° - B

Substituting value of angle B

• A = 90° - 30°

A = 60°

Now , coming to the question

secA tanB - cotA sinB

Substituting the values of angles A & B

⇒ sec60° tan30° - cot60° sin30°

⇒ 2(1/√3) - (1/√3)(1/2)

⇒ 2/√3 - 1/2√3

⇒ 4 - 1/2√3

⇒ 3/2√3

By Rationalizing the denominator

⇒ 3(2√3)/(2√3)(2√3)

⇒ 6√3/4(3)

⇒ 6√3/12

secA tanB - cotA sinB = 3/2

cosecA cotB + sinA tanB

Substituting the values of angles A & B

⇒ cosec60° cot30° + sin60° tan30°

⇒ 2/√3 ( √3 ) + √3/2 ( 1/√3)

⇒ 2 + 1/2

⇒ ( 4 + 1/2)

cosecA cotB + sinA tanB = 5/2

Similar questions