if cos ( A + B ) = 0 and cot ( A-B ) = √3 find the value of secA.tanB - cotA . sinB
Answers
Given : Cos ( A + B ) = 0 and Cot ( A - B ) = √3.
We Know that :
Cos90° = 0
∵ Cos 90° = Cos (A + B)
∴ (A+B)= 90 (i)
Cot30° = √3
∵ Cot 30° = Cot (A - B)
∴ (A-B)= 30 (ii)
Adding Equations (i)&(ii) ;
A+B = 90
A-B= 30
2A = 120°
A = 60° And B = 30°
Now,
secA.tanB - cotA . sinB
= sec60.tan30 - cot60 . sin30
=
=
=
=
Answer:
√3/2
Step-by-step explanation:
(i)
⇒ cos(A + B) = 0
⇒ cos(A + B) = cos 90°
⇒ A + B = 90°
(ii)
⇒ Cot(A - B) = √3
⇒ Cot(A - B) = cot 30°
⇒ A - B = 30°
On adding (i) & (ii).
A + B = 90
A - B = 30
---------------
2A = 120
A = 60°
Place A = 60° in (i).
⇒ A + B = 90
⇒ 60 + B = 90
⇒ B = 30.
SecA. tanB - cotA.sinB
⇒ sec(60) * tan(30) - cot(60) * sin(30)
⇒ 2 * (1/√3) - (1/√3) * (1/2)
⇒ (2/√3) - (1/2√3)
⇒ (4 - 1)/(2√3)
⇒ 3/2√3
⇒ (√3 * √3)/2√3
⇒ √3/2.
Hope it helps you.
#Be brainly