Math, asked by kotaswararaokundeti, 8 months ago

If cos(A+B) =0;cosA=√3/2 then find value of B​

Answers

Answered by Anonymous
4

Solution:-

Given

  \rm\cos(A + B) = 0

 \rm \:  \cos  A  =  \dfrac{ \sqrt{3} }{2}

To find

 \rm \: value \: of \: B

Using trigonometry identity

 \rm \:  \cos(A + B)  =  \cos  A. \cos B -  \sin A  . \sin B

if

 \rm  \cos A =   \dfrac{ \sqrt{3} }{2}  =  \dfrac{b}{h}

using pythagoras theorem

 \rm {h}^{2}  =  {p}^{2}  +  {b}^{2}

 \rm \: 4 =  {p}^{2}  + 3

 \rm \: p = 1

So

  \rm\sin A  =  \dfrac{1}{2}  =  \dfrac{p}{h}

put the value

 \rm \:  \cos(A + B)  =  \cos  A. \cos B -  \sin A  . \sin B

 \rm \dfrac{ \sqrt{3} }{2}  \times  \cos B -  \dfrac{1}{2}  \times  \sin B = 0

 \dfrac{ \sqrt{3}  \cos B }{2}  =  \dfrac{ \sin B}{2}

\dfrac{ \sqrt{3}  \cos B }{ \not2}  =  \dfrac{ \sin B}{ \not2}

 \rm{ \sqrt{3}  \cos B }=  \sin B

 \rm \dfrac{ \sin B}{ \cos B }  =  \sqrt{3}

   \rm\tan B =  \sqrt{3}

 \rm \:  B = \tan {}^{ - 1}   \sqrt{3}

 \rm \: B = 60 \degree

Similar questions