If cos(A+B) =0, Then sin (A-B) is equal to what?
Answers
Answered by
22
cos( a+b) = 0
therefore a+b= 90o {cos90 = 0}
a=90-b .....1
sin(a-b) = cos( 90- [a-b])
= cos(90 -a+b) ......2
substituting equation 1 in equation 2
cos(90-[90-b]+b)
= cos(90-90+b+b)
=cos 2b
Answered by
1
sin (A-B) = cos 2B = - cos2A if cos(A+B) =0
Given:
cos(A+B) =0
To Find:
sin (A-B)
Solution:
cos(A+B) =0
cos 90° = 0
=> A + B = 90°
=> A = 90° - B or B = 90° - A
Substitute A = 90 - B in sin(A- B)
= sin (90° - B - B)
= sin (90° - 2B)
Using sin(90° - x) = cos x
= cos 2B
Hence sin (A-B) = cos 2B
or
Substitute B = 90° - A in sin(A- B)
= sin( A - (90° - A))
= sin(2A - 90°)
Using sin(-x) = - sinx
= - sin(90° - 2A)
= - cos2A
Hence sin (A-B) = cos 2B = - cos2A
Similar questions