if cos(A-B)+1=0 then prove cosA+cosB=0 and sinA+sinB=0
Answers
Answered by
1
Step-by-step explanation:
If cos(A+B) +1=0, then how to prove that cosA+ cos B=0 and sinA+sin B=0?
It is given that:
cos(A−B)+1=0
⇒cos(A−B)=−1.(1)
We also have:
(sinA+sinB)2+(cosA+cosB)2=sin2A+sin2B+2sinAsinB+cos2A+cos2B+2cosAcosB=1+1+2(cosAcosB+sinAsinB)[∵sin2θ+cos2θ=1,∀θ∈R.]=2+2cos(A−B)=2−2[Using (1).]
∴(sinA+sinB)2+(cosA+cosB)2=0.
But sum of two(real) perfect squares can be 0 iff both of the real numbers are separately 0. Therefore,
sinA+sinB=0and cosA+cosB=0.†
Similar questions