if cos(A-B)= 1/2, sin (A+B) = 1/2, find the smallest positive values of A and B and also their most general values
Answers
Answered by
35
hope it will help u...
Attachments:
viny6:
thnx
Answered by
75
Answer :-
→ A = 105 and B = 45 .
Step-by-step explanation :-
We have,
→ cos( A - B ) = ½ .
→ cos( A - B ) = cos 60° or cos 240°
And,
→ sin( A + B ) = ½ .
→ sin( A + B ) = sin 30° or sin 150°
Since A-B < A+B,
→ cos (A-B) = cos 60°.
→ (A-B) = 60°. --1)
→ sin (A+B) = sin 150°.
→ (A+B) = 150°. --2)
Substracting in equation (1) and (2), we get
A - B = 60 .
A + B = 150
- - -
____________
==> - 2B = -90° .
==> B = 45° .
•°• B = 45°,
Putting the value of B in equation (1), we get
==> A - ( 45) = 60 .
==> A = 60 + 15 .
•°• A = 105°
Hence, it is solved .
→ A = 105 and B = 45 .
Step-by-step explanation :-
We have,
→ cos( A - B ) = ½ .
→ cos( A - B ) = cos 60° or cos 240°
And,
→ sin( A + B ) = ½ .
→ sin( A + B ) = sin 30° or sin 150°
Since A-B < A+B,
→ cos (A-B) = cos 60°.
→ (A-B) = 60°. --1)
→ sin (A+B) = sin 150°.
→ (A+B) = 150°. --2)
Substracting in equation (1) and (2), we get
A - B = 60 .
A + B = 150
- - -
____________
==> - 2B = -90° .
==> B = 45° .
•°• B = 45°,
Putting the value of B in equation (1), we get
==> A - ( 45) = 60 .
==> A = 60 + 15 .
•°• A = 105°
Hence, it is solved .
Similar questions