Math, asked by dtshashankisop, 10 months ago

if cos(a-b)=3÷5 and tan Ato b=2 then​

Answers

Answered by Anonymous
6

Answer:

 \bf  \huge\pink{Given:}

 \tan(a). \tan(b)  = 2

or \:  \frac{ \sin(A). \sin(B) }{ \cos(A) \cos(B)  }  = 2

or \:  \sin(A)  \sin(B)  =  \cos(A) \cos(B) .......(1)

and \:  \cos(A + B)  =  \frac{3}{5}

and \:  \cos(A + B)  =  \cos(A) \cos(B)   +  \sin(A)  \sin(B)

or \:  \cos(A)  \cos(B)  +  \sin(A)  \sin(B)  =  \frac{3}{5} .....(2)

From \: (1) \: we \: get

3 \cos(A)  \cos(B)  =  \frac{3}{5}

Or \:  \cos(A)  \cos(B)  =  \frac{1}{5} ........(3)

So \:  \sin(A). \sin(B)  = 2 \times  \frac{1}{5}  =  \frac{2}{5} .........(4)

now \:  \cos(A + B)  =  \cos(A)  \cos(B)  -  \sin(A)\sin(B)

Now \: from \: eqn.(3) \: and \: (4) \: we \: can \: say

 \cos(A + B)  =  \frac{1}{5}  -  \frac{2}{5}

 =  \frac{1 - 2}{5}

 = \frac{ - 1}{5}

Similar questions