Physics, asked by Anonymous, 4 months ago

if cos (A + B) = cos A cos B - sin A sin B

then, cos 3 A = ? ​

Answers

Answered by tennetiraj86
12

Explanation:

Given:-

cos (A + B) = cos A cos B - sin A sin B

To find:-

The value of cos 3 A

Solution:-

Given that

cos (A + B) = cos A cos B - sin A sin B -----(1)

Now we have to find the value of Cos 3A

It can be written as

Cos (2A+A)

Put A = 2 A and B = A in the above formula (1) ,then

=>Cos 2A Cos A - Sin 2A sin A

And it can be written as

=>Cos (A+A) Cos A -Sin 2A Sin A

=>(Cos A CosA -Sin A Sin A ) CosA -Sin2A Sin A

=>(Cos^2 A - Sin^2 A ) Cos A - Sin 2A Sin A

=>(Cos^2×Cos A - Sin^2 A Cos A )-(Sin 2A SinA)

=>Cos^3 A - Sin^2ACosA - Sin 2A Sin A

We know that Sin^2 A + Cos^2 A = 1

=>Cos^3 A - (1-Cos^2 A)(Cos A) - Sin 2A Sin A

=> Cos^3 A -(Cos A -Cos^3 A) - Sin 2A Sin A

=>Cos^3 A -Cos A +Cos^3 A - Sin 2A Sin A

=>2Cos^3 A - Cos A - Sin 2A Sin A

We know that Sin 2A = 2 Sin A Cos A then

=>2Cos^3 A - Cos A -2 Sin A Cos A Sin A

=>2 Cos^3 A -Cos A -2 Sin^2 A Cos A

=>2 Cos^3 A -Cos A ( 1 +2 Sin^2 A)

=>2 Cos^3 A - Cos A (1+[2(1-Cos^2 A)]

=>2 Cos^3 A - Cos A[1+ (2 - 2Cos^2 A)

=>2 Cos^3 A - Cos A[1+2 - 2Cos^2 A)

=>2 Cos^3 A - Cos A[3 - 2Cos^2 A)

=>2 Cos^3 A - 3 Cos A +Cos A×2Cos^2 A

=>2 Cos^3 A - 3 Cos A + 2Cos^3 A

=>4 Cos^3 A - 3 Cos A

Answer:-

Cos 3A = 4 Cos^3 A - 3 Cos A

Used formulae:-

  • cos (A + B) = cos A cos B - sin A sin B
  • Sin^2 A + Cos^2 A = 1
  • Sin 2A = 2 Sin A Cos A
Answered by GoodLuck8491
0

Answer:

if you find it helpful then please mark me as a brainlist..

Attachments:
Similar questions