If cos(A+B)=cos A cos B-sin A sin B, what is the value of cos 120°?
Answers
Answered by
1
Answer:Solution
verified
Verified by Toppr
We can prove this by using euler’s identity : e
ix
=cosx+i sinx
therefore we have e
iA
=cosA+i sinA,
and e
iB
=cosB+isinB
now
e
iA
∗e
iB
=e
i(A+B)
⇒(cosA+i sinA)(cosB+i sinB)=(cos(A+B)+i sin(A+B))
⇒(cosA∗cosB−sinA∗sinB)+i(sinA∗cosB+cosA∗sinB)=(cos(A+B)+i sin(A+B))
On equating the imaginary parts on both sides of the equation we get the required result
i.e.sin(A+B)=sinA∗cosB+cosA∗sinB
Step-by-step explanation:
Similar questions
Political Science,
4 days ago
English,
9 days ago
Social Sciences,
9 months ago
Social Sciences,
9 months ago
Math,
9 months ago