if cos(a-b)+cos(b-c)+cos(c-a)=-1/2 ,then prove that cos a+cos b+cos c =0
Answers
Answer:
Sin a + Sin b + Sin c = 0
Step-by-step explanation:
From question,
Cos(a-b) = Cos a Cos b +Sin a SIn b
Using above identity in the given question and taking \frac{-3}{2}
2
−3
on other side, the result is:
⇒ 2(Cos a Cos b + Sin a Sin b + Cos c Cos b + Sin c Sin b + Cos a Cos c + Sin a Sin c) + 3 = 0
We can write 3 as 1 + 1 + 1, ........... (1)
So, we know Sin^{2}a + Cos^{2} a = 1Sin
2
a+Cos
2
a=1
applying above equation in equation (1),
⇒ 2(Cos a Cos b + Sin a Sin b + Cos c Cos b + Sin c Sin b + Cos a Cos c + Sin a Sin c) + Sin^{2}a + Cos^{2} aSin
2
a+Cos
2
a +Sin^{2}b + Cos^{2} bSin
2
b+Cos
2
b + Sin^{2}c + Cos^{2} cSin
2
c+Cos
2
c = 0 ........ (2)
We know, x^{2} + y^{2} + z^{2} + 2xy + 2yz + 2yz = 0x
2
+y
2
+z
2
+2xy+2yz+2yz=0
Using above identity to equation (2),
⇒ (Cos a + Cos b + Cos c)^{2}(Cosa+Cosb+Cosc)
2
+ (Sin a + Sin b + Sin c)^{2}(Sina+Sinb+Sinc)
2
= 0
Hence, sum of squares of above terms are zero. So, these terms are also 0.
Hence proved.
Step-by-step explanation:
HOPE IT WILL HELP YOU
Step-by-step explanation:
hope it helps you...........