Math, asked by kla3, 1 year ago

if Cos( A-b) is equal to ✓ 3\2 and sin( a + b )= 1 then find the value of a and b

Answers

Answered by abhi569
1

cos( a - b ) = \dfrac{\sqrt{3}}{2}


cos( a - b ) = cos30°


       a - b = 30°            -------: ( 1 )



sin( a + b ) = 1

sin( a + b ) = sin 90°

      a + b = 90°        --------: ( 2 )


       

            Adding ( 1 ) & ( 2 )


a - b = 30°

a + b = 90°

________

2a = 120°

________


a = \dfrac{120°}{2}


a = 60°



          Substituting the value of a in ( 1 )


a - b = 30°

60° - b = 30°

60° - 30° = b

30° = b



Therefore, value of a = 60°

                   value of b = 30°



Answered by Anonymous
8

 \cos(a - b) =  \frac{ \sqrt{3} }{2}  \\  \cos(a - b)  =  \cos(30)   \\ \\ so \\  \:  \:  \:  \:  \:a - b = 30 \:  \:  \:  \:  \: .........(1) \\ \\  \\  \sin(a + b)  = 1 \\  \sin(a + b)  =  \sin(90)  \\ \\ so \\  \:  \:  \:  \:  \: a + b = 90 \:  \:  \:  \:  \: .........(2)


equation (1)+ equation (2)
a - b = 30 \\ a + b = 90
____________
2a = 120 \\ a =  \frac{120}{2}  \\ a = 60


substituting the value of a in equation (1)


60 - b = 30 \\ 60 - 30 = b \\ b = 30



So the value of a is 60 and b is 30.
Similar questions