Math, asked by rimjhimojha62, 2 months ago

if cos (A+B)=sin(A-B)=1/2,0<A+B<₩ 90 degree and A>B, then find the values A and B?​

Attachments:

Answers

Answered by mathdude500
7

\begin{gathered}\begin{gathered}\bf\: Given-\begin{cases} &amp;\sf{0 &lt; B &lt; A &lt; 90\degree } \\  \\ &amp;\sf{cos(A + B) = \dfrac{1}{2} } \\ \\ &amp;\sf{sin(A - B) = \dfrac{1}{2} } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: Find - \begin{cases} &amp;\sf{A \: and \: B}\end{cases}\end{gathered}\end{gathered}

Values Used :-

\rm :\longmapsto\:sin30\degree  = \dfrac{1}{2}

\rm :\longmapsto\:cos60\degree  = \dfrac{1}{2}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:0 &lt; B &lt; A &lt; 90\degree

\rm :\longmapsto\:cos(A + B) = \dfrac{1}{2}

\rm :\longmapsto\:cos(A + B) =  cos60\degree

\bf\implies \:A + B = 60\degree  -  -  - (1)

Also,

\rm :\longmapsto\: sin(A - B)= \dfrac{1}{2}

\rm :\longmapsto\: sin(A - B)= sin30\degree

\bf\implies \:A - B = 30\degree  -  -  - (2)

On adding equation (1) and (2), we have

\rm :\longmapsto\:A + B + A - B = 60\degree  + 30\degree

\rm :\longmapsto\:2A = 90\degree

\bf\implies \:A = 45\degree

On substituting the value of A in equation (1), we get

\rm :\longmapsto\:45\degree  + B = 60\degree

\rm :\longmapsto\:B = 60\degree  - 45\degree

\bf\implies \:B = 15\degree

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:Hence-\begin{cases} &amp;\sf{A = 45\degree } \\ &amp;\sf{B = 15\degree } \end{cases}\end{gathered}\end{gathered}

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3}}{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp;1 &amp; \sqrt{3} &amp; \rm \infty \\ \\ \rm cosec A &amp; \rm \infty &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm \infty \\ \\ \rm cot A &amp; \rm \infty &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions