Math, asked by agamveer812, 4 days ago

If cos A+ cos ^2 A+ cos^3A=1 then find the value of sin^6A- 4sin^4A+ 8sin^2A

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Consider,

\red{\rm :\longmapsto\:cosA +  {cos}^{2}A +  {cos}^{3}A = 1}

can be rewritten as

{\rm :\longmapsto\:cosA  +  {cos}^{3}A = 1 -  {cos}^{2} A}

We know,

\boxed{ \bf{ \:  {sin}^{2}x +  {cos}^{2}x = 1}}

So, using this, we get

{\rm :\longmapsto\:cosA  +  {cos}^{3}A =  {sin}^{2} A}

can be rewritten as

\rm :\longmapsto\:cosA(1 +  {cos}^{2}A) =  {sin}^{2}A

can be rewritten as

\rm :\longmapsto\:cosA(1 + 1 -  {sin}^{2}A) =  {sin}^{2}A

\rm :\longmapsto\:cosA(2 -  {sin}^{2}A) =  {sin}^{2}A

On squaring both sides, we get

\rm :\longmapsto\: {cos}^{2}A {(2 -  {sin}^{2} A)}^{2}  =  {sin}^{4}A

can be further rewritten as using identity

\boxed{ \bf{ \:  {(x - y)}^{2} =  {x}^{2} +  {y}^{2} - 2xy}}

\rm :\longmapsto\: (1 - {sin}^{2}A) {(4 +   {sin}^{4} A - 4 {sin}^{2}A )}  =  {sin}^{4}A

\rm :\longmapsto\: 4 +   \cancel{ {sin}^{4} A} - 4 {sin}^{2}A - 4 {sin}^{2}A -  {sin}^{6}A +  {4sin}^{4}A =  \cancel{ {sin}^{4}A}

\rm :\longmapsto\: 4  - 8 {sin}^{2}A -  {sin}^{6}A +  {4sin}^{4}A = 0

\rm :\longmapsto\:   - 8 {sin}^{2}A -  {sin}^{6}A +  {4sin}^{4}A =  - 4

\rm :\longmapsto\:   8 {sin}^{2}A + {sin}^{6}A  - {4sin}^{4}A =  4

\bf\implies \: {sin}^{6}A -  {4sin}^{4}A +  {8sin}^{2}A = 4

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions