Math, asked by snehagupta211005, 1 month ago

if cos a/cos b = m and cos a/ cos b show that (m2 n2) cos2 b=n2​

Answers

Answered by MysticSohamS
2

Answer:

hey here is your answer

pls mark it as brainliest

Step-by-step explanation:

to \: prove =  \\  (m {}^{2}  + n {}^{2} ).cos {}^{2} b = n {}^{2}  \\  \\ so \: here \\  \frac{cos \: a}{cos \: b}  = m \\  \\  \frac{cos \: a}{sin \: b}  = n \\  \\ squaring \: both \: terms \\ we \: get \\  \\  \frac{cos {}^{2} a}{cos {}^{2}b }  = m {}^{2}   \:  \:  \:  \:  \:  \:  \:  \: (1)\\  \\  \frac{cos {}^{2} a}{sin {}^{2}b }  = n {}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2)

adding \: (1) \: and \: (2) \\ we \: get \\ m {}^{2}  + n {}^{2}  =  \frac{cos {}^{2} \: a }{cos {}^{2}  \: b}  +  \frac{cos {}^{2} \ \: a }{sin {}^{2}  \: b}  \\  \\  =  \frac{(cos {}^{2} \:  a.sin {}^{2}  \: b) +( cos {}^{2} \: a.cos {}^{2}  b)}{cos { }^{2} \: b .sin {}^{2}  \: b}  \\  \\  =  \frac{cos {}^{2} \: a(sin {}^{2} b + cos {}^{2} \: b)  }{cos {}^{2} \: b.sin {}^{2}  \: b }  \\  \\  =  \frac{cos {}^{2}  \: a(1)}{cos {}^{2}  \: b.sin {}^{2}  \: b}  \\  \\ ( m {}^{2}  + n {}^{2} ).cos {}^{2}  \: b =  \frac{cos {}^{2} \: a }{sin {}^{2}  \: b}  \\  \\ (m {}^{2}  + n {}^{2} ).cos {}^{2}  \: b = n {}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \: from \: (2) \\  \\ thus \: proved

Similar questions