Math, asked by shubham23072006, 3 months ago

If cos A + cos² A = 1, prove that sin² A+ sin⁴A = 1​

Answers

Answered by itzsecretagent
4

Answer:

 \sf cos  \: A+ cos² A=1

 \sf \: cos \:  A=1-cos² A

 \sf \: cos  \: A = sin² A

 \sf \:LHS = sin² A+  {sin}^{4}  A

 \implies \sf  sin² A+ (sin²  \:A )

 \sf \implies \:sin² A+ (cos A) ²

 \sf \implies \: sin² A+ cos  \: A

 \sf \implies \: 1

Hence proved

Answered by Anonymous
45

Answer:

{ \large{ \pmb{  \sf{★Given.. .}}}}

CosA + Cos²A = 1

{ \large{ \pmb{ \sf{★Used  \: Identity... }}}}

Sin²A + Cos²A = 1

{ \large{ \pmb{ \sf{★ To \:  Prove... }}}}

sin² A+ sin⁴A = 1

{ \large{ \pmb{ \sf{★Solution... }}}}

From, CosA + Cos²A = 1

{ \implies{ \sf{CosA + Cos²A = 1}}}

 \: { \implies{ \sf{CosA  = 1 - Cos²A}}}

 \: { \implies{ \bold{ CosA = Sin²A...(1)}}}

So, From this CosA is equal to two SinA's

{ \implies{ \sf{Sin⁴A + Sin²A = 1}}}

Substitute equation (1) ,

{ \implies{ \sf{Cos²A + CosA = 1}}}

{ \mathbb{ \blue{HENCE \:   \:  \: PROVED...!!  }}}

Similar questions