If cos A +cos²A = 1, then sin² A + sin⁴ A is
Answers
Answered by
2
CosA+cos² A = 1
=> cosA = 1-cos² A
=> cos A = sin² A
(since 1-cos² A = sin² A)
Squaring both sides we get
cos²A = sin⁴ A
=> (1-sin²A) = sin⁴ A
( since cos² A=1-sin^2 A)
=> 1 = sin⁴A + sin² A
or Sin⁴A + SIN ²A =1
Answered by
0
Answer:
Step-by-step explanation:
CosA+cos² A = 1
=> cosA = 1-cos² A
=> cos A = sin² A
(since 1-cos² A = sin² A)
Squaring both sides we get
cos²A = sin⁴ A
=> (1-sin²A) = sin⁴ A
( since cos² A=1-sin^2 A)
=> 1 = sin⁴A + sin² A
or Sin⁴A + SIN ²A =1
Similar questions