Math, asked by panduammulu14, 9 months ago

if cos A= n cos B and sin a= M Sin B then show that (m^2-n^2) into sin^2b= 1-n^2

Answers

Answered by SwaggerGabru
12

QUESTION -

if cos A= n cos B and sin a= M Sin B then show that (m^2-n^2) into sin^2b= 1-n^2

ANSWER -

m = Sin A /Sin B

n = Cos A /Cos B

Thus, putting these in 

(m^2 - n^2)Sin^2b = (Sin^2 a/Sin^2 b - Cos^2 a/Cos^2 b)Sin^2 b

taking LCM :-

                             = [(Sin^2 a Cos^2 b - Cos^2 a Sin^2 b)/Sin^2 b Cos^2 b]

                                      * Sin^2 b

                             = (Sin^2 a Cos^2 b - Cos^2 a Sin^2 b)/ Cos^2 b

                             = Sin^2 a - Cos^2 a Sin^2 b/Cos^2 b

                            = Sin^2 a -  Cos^2 a tan^2 b

Answered by Anonymous
4

Step-by-step explanation:

THANK U....................

Attachments:
Similar questions