Math, asked by sahilpreetkaur32, 9 months ago

if cos A=p/q, find sin A +cos A in terms of p and q .plzzz solve it

Answers

Answered by matchbyaman
1

Answer:

{(√q²-p²)+p}/q

Step-by-step explanation:

cos A=p/q=base/hypotenuse

base=p, and Hypotenuse=q

First of all we have to find out the value of perpendicular,

Applying Pythagoras theorem,

(Perpendicular)²+(Base)²=(Hypotenuse)²

(Perpendicular)²=(Hypotenuse)²-(Base)²

(Perpendicular)²=q²-p²

Perpendicular=√q²-p²

Then, sin A=perpendicular/hypotenuse=√q²-p²/q

So, sin A+ cos A=√q²-p²/q+p/q

={(√q²-p²)+p}/q

Similar questions