If cos a = root 3 divided by 2 then the value of (cosec^2 a - sec^2 a) divided by (cosec^2 a + sec^2 a) is
Answers
Answered by
0
Step-by-step explanation:
The value of \frac{1-sec\theta}{1+cosec\theta}
1+cosecθ
1−secθ
= \frac{3-2\sqrt{3}}{9}
9
3−2
3
.
The value of cosθ = √3/2.
Now using the identity, sin²θ + cos²θ = 1
sin²θ = 1 - (3/4)
sin²θ = 1/4
sinθ = (1/2)
Now, we have to find the value of \frac{1-sec\theta}{1+cosec\theta}
1+cosecθ
1−secθ
.
Substituting the values in the given expression , we get
\frac{1-sec\theta}{1+cosec\theta}
1+cosecθ
1−secθ
= \frac{1-(1/cos\theta)}{1+(1/sin\theta)}
1+(1/sinθ)
1−(1/cosθ)
= \frac{1-2/(\sqrt{3})}{1+(2)}
1+(2)
1−2/(
3
)
= \frac{(\sqrt{3})-2}{3(\sqrt{3})}
3(
3
)
(
3
)−2
= \frac{3-2\sqrt{3}}{9}
9
3−2
3
Similar questions