if cos A + sin A = √2 cos A then cos A- sin A
Answers
Answered by
14
If Cos A + Sin A = √2 Cos A then Cos A - Sin A = √2 sin A.
Solution :-
We have :
=> Cos A + Sin A = √2 Cos A
Squaring both sides , we get
=> ( CosA + SinA)² = 2Cos²A
=> Cos²A + Sin a + 2Cos A SinA = 2 Cos²A
=> Cos²A - 2 Cos A Sin = Sin²A
=> Cos²A - 2 Cos A Sin + Sin²A = Sin²A + Sin²A [ Adding Sin²A on both sides ]
=> ( Cos A - Sin A )² = 2 Sin²A
=> ( Cos A - Sin A ) = √2 Sin A .
Hence,
( Cos A - Sin A ) = √2 Sin A.
Solution :-
We have :
=> Cos A + Sin A = √2 Cos A
Squaring both sides , we get
=> ( CosA + SinA)² = 2Cos²A
=> Cos²A + Sin a + 2Cos A SinA = 2 Cos²A
=> Cos²A - 2 Cos A Sin = Sin²A
=> Cos²A - 2 Cos A Sin + Sin²A = Sin²A + Sin²A [ Adding Sin²A on both sides ]
=> ( Cos A - Sin A )² = 2 Sin²A
=> ( Cos A - Sin A ) = √2 Sin A .
Hence,
( Cos A - Sin A ) = √2 Sin A.
Similar questions