If cos a =x/y find the value of tan a
Answers
Answered by
0
since,
cos A = base / hypotenuse
cos A = x / y
therefore,
in the right triangle,
(perpendicular)^2 + (base)^2 = (hypotenuse)^2
p^2 + x^2 = y^2
p^2 = y^2 - x^2
p = √y^2 - x^2
hence,
Tan A = perpendicular / hypotenuse
tan A = √y^2 - x^2 /y
cos A = base / hypotenuse
cos A = x / y
therefore,
in the right triangle,
(perpendicular)^2 + (base)^2 = (hypotenuse)^2
p^2 + x^2 = y^2
p^2 = y^2 - x^2
p = √y^2 - x^2
hence,
Tan A = perpendicular / hypotenuse
tan A = √y^2 - x^2 /y
Answered by
0
tana = sina / cosa
=root(1-cos^2a) / cosa
= root (1-x^2/y^2) / (x/y)
={ root (y^2- x^2)/y^2 } / (x/y)
= root(y^2-x^2)/xy
hope it help u....
mark me as brainliest...
=root(1-cos^2a) / cosa
= root (1-x^2/y^2) / (x/y)
={ root (y^2- x^2)/y^2 } / (x/y)
= root(y^2-x^2)/xy
hope it help u....
mark me as brainliest...
Similar questions
Science,
7 months ago
Math,
7 months ago
English,
7 months ago
Math,
1 year ago
Computer Science,
1 year ago
Psychology,
1 year ago