if cos. alfa / cos. beta= m, cos. alfa/ sin. beta= n, then prove that ( m^2+ n^2) cos. beta= n^2
Answers
Answered by
2
proved in the explanation
Step-by-step explanation:
take
alfa = a and beta = b ..... for better understanding
→ cos a = m ......→ 1
cos b
→ cos a = n .......→2
sin b
by cross multiply of 1 and 2
we get
→ cos a = ( cos b)m
→ cos b = ( sin b)n
equating both we get
→(cos b)m = n(sin b)
squaring on both sides we get
→ cos ²b(m²) = (sin ²b) n²
→ (cos ²b)m²= (1 - cos ²b)n²
→ (cos ²b)m² = n² - (n²) cos ²b
→ (m² + n²) cos ²b = n²
i hope u understood this solution
Similar questions