if cos alpha=8/17 and sin beta=5/13 then find the value of sin (alpha -beta)
Answers
EXPLANATION.
cosα = 8/17. and sinβ = 5/13.
By using the Pythagoras theorem,
⇒ H² = P² + B².
(A) = cosα = 8/17 = base/hypotenuse.
⇒ (17)² = P² + (8)².
⇒ 289 = P² + 64.
⇒ 289 - 64 = P².
⇒ 225 = P².
⇒ P = √225.
⇒ P = 15.
sinα = perpendicular/hypotenuse. = 15/17.
cosα = base/hypotenuse. = 8/17.
tanα = perpendicular/base. = 15/8.
cosecα = hypotenuse/perpendicular. = 17/15.
secα = hypotenuse/base. = 17/8.
cotα = base/perpendicular. = 8/15.
(B) = sinβ = perpendicular/hypotenuse. = 5/13.
By using Pythagorean Theorem,
⇒ H² = P² + B².
⇒ (13)² = (5)² + B².
⇒ 169 = 25 + B².
⇒ 169 - 25 =B².
⇒ 144 = B².
⇒ B = √144.
⇒ B = 12.
sinβ = perpendicular/hypotenuse. = 5/13.
cosβ = base/hypotenuse. = 12/13.
tanβ = perpendicular/base. = 5/12.
cosecβ = hypotenuse/perpendicular = 13/5.
secβ = hypotenuse/base. = 13/12.
cotβ = base/perpendicular. = 12/5.
To find value of Sin ( α - β ).
sin (α - β ) = sinα. cosβ - cosα. sinβ.
sin ( α - β ) = 15/17 X 12/13 - 8/17 X 5/13.
sin ( α - β ) = 180/221 - 40/221.
sin ( α - β ) = 140/221.
MORE INFORMATION.
(1) = sin2∅ = 2sin∅cos∅ = 2tan∅/1 + tan²∅.
(2) = cos2∅ = cos²∅ - sin²∅ = 2cos²∅ - 1 = 1 - 2sin²∅ = 1 - tan²∅/1 + tan²∅.
(3) = tan2∅ = 2tan∅/ 1 - tan²∅.
Answer:
Solution:-
- First we should make a right angle triangle with cos alpha. And we have to find the value of opposite angle with the help of Pythagoras theorem. After we can find sin alpha value
- And After we should make a other right angle triangle with sin beta. and finding adjacent value after that we can find cos beta value.
- We can find answer By using the formula Sin(α-β) = Sinα×cosβ-cosα×sinβ
From the 1st attachment :-
⇾ AB² + BC² = AC²
⇾ x² + 8² = 17²
⇾ x² + 64 = 289
⇾x² = 289 - 64
⇾x² = 225
⇾x = √225 = 15
⇾x = 15
So, Sinα = 15/17
From the 2nd attachment:-
⇾AB² + BC² = AC²
⇾5² + x² = 13²
⇾25 + x² = 169
⇾x² = 169 - 25
⇾x² = 144
⇾x = √144 = 12
⇾x = 12
So, Cosβ = 12/13
Let's find sin(α-β) :-
Therefore,
- sin(α-β) = 140/221