English, asked by Anonymous, 4 months ago

if cos alpha=8/17 and sin beta=5/13 then find the value of sin (alpha-beta)​

Answers

Answered by NewGeneEinstein
5

Given:-

  • \bf cos\alpha=\dfrac {8}{17}
  • \bf sin\beta=\dfrac {5}{13}

To find:-

  • \bf sin (\alpha-\beta)

Solution:-

We know that

  • \boxed{\bf sin\alpha=\sqrt {1-cos^2\alpha}}

Substitute the values

\\\qquad\quad\displaystyle\sf{:}\implies sin\alpha=\sqrt {1-(\dfrac {8}{17})^2 }

\\\qquad\quad\displaystyle\sf{:}\implies sin\alpha=\sqrt {1-\dfrac{64}{289}}

\\\qquad\quad\displaystyle\sf{:}\implies sin\alpha=\sqrt {\dfrac {289-64}{289}}

\\\qquad\quad\displaystyle\sf{:}\implies sin\alpha=\sqrt {\dfrac{225}{289}}

\\\qquad\quad\displaystyle\sf{:}\implies sin\alpha=\dfrac {15}{17}

Again

\boxed{\bf cos\beta=\sqrt {1-sin^2\beta}}

  • Substitute the values

\\\qquad\quad\displaystyle\sf{:}\implies cos\beta=\sqrt {1-(\dfrac {5}{13})^2}

\\\qquad\quad\displaystyle\sf{:}\implies cos\beta=\sqrt {1-\dfrac {25}{289}}

\\\qquad\quad\displaystyle\sf{:}\implies cos\beta=\sqrt {\dfrac {1-169-25}{169}}

\\\qquad\quad\displaystyle\sf{:}\implies cos\beta=\sqrt {\dfrac {144}{169}}

\\\qquad\quad\displaystyle\sf{:}\implies cos\beta=\dfrac {13}{19}

  • Now

\boxed {\bf sin (\alpha-\beta)=sin\alpha.cos\beta-cos\alpha.sin\beta}

  • Substitute the values

\\\qquad\quad\displaystyle\sf{:}\implies sin (\alpha-\beta)=\dfrac {15}{17}\times\dfrac {12}{13}-\dfrac {8}{17}\times\dfrac {5}{13}

\\\qquad\quad\displaystyle\sf{:}\implies sin (\alpha-\beta)=\dfrac {180}{221}-\dfrac {40}{221}

\\\qquad\quad\displaystyle\sf{:}\implies sin (\alpha-\beta)=\dfrac{180-40}{221}

\\\qquad\quad\displaystyle\bf{:}\implies sin (\alpha-\beta)=\dfrac{140}{221}

Similar questions