Math, asked by aarushikaur1, 1 year ago

If cos (alpha+beta)=0 then prove that sin (alpha-beta) = cos 2beta.​


KumarJayant: tomorrow its easy
aarushikaur1: okay
Anonymous: Mark my Ans as brainlist if it helps you:))

Answers

Answered by Anonymous
10

Answer \:  \\  \\ GIVEN \:  \: Question \:  \: Is \:  \:  \\  \\  \cos( \alpha  +  \beta )  = 0 \:  \:  \:  \: then \:  \: prove \: that \\  \sin( \alpha  -  \beta )  =  \cos(2 \beta )  \\  \\  \cos( \alpha  +  \beta )  = 0 \\  \\  \cos( \alpha  +  \beta )  =  \cos( \frac{\pi}{2} )  \\  \\  \alpha  +  \beta  =  \frac{\pi}{2}  \\  \\  \alpha  =  \frac{\pi}{2}  -  \beta  \\   lhs \\  \\  \sin( \alpha  -  \beta )  \\  \\  \sin( \frac{\pi}{2}  -   \beta  -  \beta )  \\  \\  \sin( \frac{\pi}{2}  - 2 \beta )  \\  \\  \cos(2 \beta )  \:  \:  \:  \: hence \: proved \:  \\  \\ Note \:  \:  \\  \\  \sin( \frac{\pi}{2}  - 2x)  =  \cos(2x)

Answered by Anonymous
5

Step-by-step explanation:

 \begin{lgathered} \\ \\ \cos( \alpha + \beta ) = 0 \: \: \: \: \\ \\ Then \: \: Prove \: That \\ \\ \sin( \alpha - \beta ) = \cos(2 \beta ) \\ \\ \\ \cos( \alpha + \beta ) = 0 \\ \\ \\ \cos( \alpha + \beta ) = \cos( \frac{\pi}{2} ) \\ \\ \\ \alpha + \beta = \frac{\pi}{2} \\ \\ \\ \alpha = \frac{\pi}{2} - \beta \\ \\ LHS \\ \\ \\ = \sin( \alpha - \beta ) \\ \\ = \sin( \frac{\pi}{2} - \beta - \beta ) \\ \\ = \sin( \frac{\pi}{2} - 2 \beta ) \\ \\ =\cos(2 \beta ) \: \: \: \: \\ \\  Hence \: Proved \: \\ \\ \end{lgathered}

Similar questions