If cos(alpha + beta) + sin(alpha – beta) = 0. then (alpha + beta) can be -
1. π
2. 3π/4
3. 5π
4. 5π/2
Answers
Required Answer:-
Cos (α + β) + sin(α - β) = 0
Now, I will suggest to expand these trigonometric ratios separately by using identities. The identities are:
Identities that can be used:-
cos (a + b) = cos a cos b - sin a sin b --- (1)
cos (a - b) = cos a cos b + sin a sin b --- (2)
sin (a + b) = sin a cos b + cos a sin b ---(3)
sin (a - b) = sin a cos b - cos a sin b ---(4)
Now putting the required identities (1) and (4) with respectives α and β as given in the question.
➙ Cos (α + β) + sin(α - β) = 0
➙ Cos α cos β - Sin α sin β + sin α cos β - cos α sin β = 0
➙ Cos α cos β + sin α cos β - sin α sin β - cos α sin β = 0
Taking cos β from the first two terms and sin β in the next two terms as common.
➙ cos β (Cos α + sin α) - sin β (Sin α + cos α) = 0
➙ (cos β - sin β)(cos α + sin α) = 0
Then,
If cos β - sin β = 0
⇒ cos β = sin β
⇒ tan β = 1
Assuming β to be in range [0, 180]
⇒ β = 45°
And,
if cos α + sin α = 0
⇒ cos α = - sin α
⇒ tan α = -1
Assuming α to be in range [0, 180]
⇒ α = 135°
Then, α + β = 135° + 45° = 180°/π radians
Option A is the correct option which also indicates that our assumption wasn't wrong earlier.