Math, asked by disha5158, 2 months ago

If cos alpha/cos beta=m and cos alpha and cos beta =n , show that (m²+n²)cos² beta=n²​

Answers

Answered by mathdude500
3

Appropriate Question :-

\rm :\longmapsto\:If \: m = \dfrac{cos \alpha }{cos \beta } \: and \: n = \dfrac{cos \alpha }{sin \beta }

show that

\rm :\longmapsto\:( {m}^{2}  +  {n}^{2} ) {cos}^{2}  \beta  =  {n}^{2}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\: m = \dfrac{cos \alpha }{cos \beta } \: and \: n = \dfrac{cos \alpha }{sin \beta }

Consider,

\rm :\longmapsto\:( {m}^{2}  +  {n}^{2} ) {cos}^{2}  \beta

\rm \:  =  \:  \:   \bigg\{ {\bigg(\dfrac{cos \alpha }{cos \beta } \bigg) }^{2}  +  {\bigg(\dfrac{cos \alpha }{sin \beta } \bigg) }^{2} \bigg \} {cos}^{2} \beta

\rm \:  =  \:  \: \bigg(\dfrac{ {cos}^{2} \alpha  }{ {cos}^{2}  \beta }  + \dfrac{ {cos}^{2}  \alpha }{ {sin}^{2}  \beta } \bigg)  {cos}^{2}  \beta

\rm \:  =  \:  \: {cos}^{2}   \alpha  \: \bigg(\dfrac{1}{ {cos}^{2}  \beta }  + \dfrac{1}{ {sin}^{2}  \beta } \bigg)  {cos}^{2}  \beta

\rm \:  =  \:  \: {cos}^{2}   \alpha  \: \bigg(\dfrac{ {sin}^{2}  \beta  +  {cos}^{2} \beta }{ {cos}^{2}  \beta  \:  {sin}^{2}  \beta } \bigg)  {cos}^{2}  \beta

\red{\bigg \{ \because \tt \:  {sin}^{2}x +  {cos}^{2}x = 1  \bigg \}}

\rm \:  =  \:  \: \dfrac{ {cos}^{2} \beta  }{ {sin}^{2}  \alpha }

\rm \:  =  \:  \:  {n}^{2}

Hence, Proved

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions