Math, asked by ItzAyushRaj, 6 months ago

if cos alpha/cos beta =m and cos alpha/sin beta=n,show that (m²+n²)cos² beta =n²​

Answers

Answered by MaIeficent
11

Step-by-step explanation:

Given:-

  • \sf m =  \dfrac{cos \alpha}{cos \beta}  \:  \: , \:  \: n =   \dfrac{cos \alpha}{sin \beta}

To Prove:-

  • \sf (m^2 + n^2)cos^2 \beta = n^2

Proof:-

\sf m =  \dfrac{cos \alpha}{cos \beta}  \:  \: , \:  \: n =   \dfrac{cos \alpha}{sin \beta}

\sf cos \beta =  \dfrac{cos \alpha }{m} \:  \:  ,\:  \: sin \beta =  \dfrac{cos \alpha }{n}

\sf cos^2 \beta =  \dfrac{cos ^2\alpha}{m^2} \:  \:  ,\:  \: sin^2 \beta =  \dfrac{cos ^2\alpha}{n^2}

Now, Adding Both

\sf \implies cos^2 \beta  +sin^2 \beta  =  \dfrac{cos ^2\alpha}{m^2}  +  \dfrac{cos ^2\alpha}{n^2}

\sf \implies 1  =  \dfrac{cos ^2\alpha}{m^2}  +  \dfrac{cos ^2\alpha}{n^2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg[{sin}^{2} \theta +  {cos}^{2} \theta = 1 \bigg]

\sf \implies 1  =   \bigg(\dfrac{1}{m^2}  +  \dfrac{1}{n^2} \bigg)cos ^2\alpha

\sf \implies 1  =   \bigg(\dfrac{ {n}^{2}  +  {m}^{2} }{m^2 {n}^{2} }  \bigg) \times cos ^2\alpha

\sf \implies 1  =   \bigg(\dfrac{ {n}^{2}  +  {m}^{2}}{{n}^{2} }  \bigg) \times  \dfrac{cos ^2\alpha}{ {m}^{2} }

\sf \implies 1  =   \bigg(\dfrac{ {n}^{2}  +  {m}^{2}}{{n}^{2} }  \bigg) \times  cos ^2\beta \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \bigg[cos^2 \beta =  \dfrac{cos ^2\alpha}{m^2}  \bigg]

 \dashrightarrow\boxed{  \rm{n}^{2}   = ({n}^{2}  +  {m}^{2})cos ^2\beta}

Hence Proved

Similar questions