Math, asked by hh5, 1 year ago

if cos alpha + isinalpha =cos(theta+itheta) then prove that Sinsquare theta =plus or minus sin alpha

Answers

Answered by mdashifiqbalsardar
0

Given:cos(θ−α),cosθ,cos(θ+α) are in H.P

cos(θ−α)

1

,

cosθ

1

,

cos(θ+α)

1

are in A.P

cosθ

1

cos(θ−α)

1

=

cos(θ+α)

1

cosθ

1

cosθ

2

=

cos(θ+α)

1

+

cos(θ−α)

1

cosθ

2

=

cos(θ+α)cos(θ−α)

cos(θ−α)+cos(θ+α)

cosθ

2

=

cos

2

θ−sin

2

α

cosθcosα−sinθsinα+cosθcosα+sinθsinα

cosθ

2

=

cos

2

θ−sin

2

α

2cosθcosα

cosθ

1

=

cos

2

θ−sin

2

α

cosθcosα

⇒cos

2

θ−sin

2

α=cos

2

θcosα

⇒sin

2

α=cos

2

θ−cos

2

θcosα

⇒sin

2

α=cos

2

θ(1−cosα)

(1−cosα)

sin

2

α

=cos

2

θ

(1−cosα)

1−cos

2

α

=cos

2

θ

(1−cosα)

(1−cosα)(1+cosα)

=cos

2

θ

⇒1+cosα=cos

2

θ

Hence cos

2

θ=1+cosα

Hence proved.

Was this answer helpful

Similar questions