if cos alpha + isinalpha =cos(theta+itheta) then prove that Sinsquare theta =plus or minus sin alpha
Answers
Answered by
0
Given:cos(θ−α),cosθ,cos(θ+α) are in H.P
⇒
cos(θ−α)
1
,
cosθ
1
,
cos(θ+α)
1
are in A.P
cosθ
1
−
cos(θ−α)
1
=
cos(θ+α)
1
−
cosθ
1
cosθ
2
=
cos(θ+α)
1
+
cos(θ−α)
1
⇒
cosθ
2
=
cos(θ+α)cos(θ−α)
cos(θ−α)+cos(θ+α)
⇒
cosθ
2
=
cos
2
θ−sin
2
α
cosθcosα−sinθsinα+cosθcosα+sinθsinα
⇒
cosθ
2
=
cos
2
θ−sin
2
α
2cosθcosα
⇒
cosθ
1
=
cos
2
θ−sin
2
α
cosθcosα
⇒cos
2
θ−sin
2
α=cos
2
θcosα
⇒sin
2
α=cos
2
θ−cos
2
θcosα
⇒sin
2
α=cos
2
θ(1−cosα)
⇒
(1−cosα)
sin
2
α
=cos
2
θ
⇒
(1−cosα)
1−cos
2
α
=cos
2
θ
⇒
(1−cosα)
(1−cosα)(1+cosα)
=cos
2
θ
⇒1+cosα=cos
2
θ
Hence cos
2
θ=1+cosα
Hence proved.
Was this answer helpful
Similar questions
English,
8 months ago
Social Sciences,
8 months ago
History,
8 months ago
English,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago
Chemistry,
1 year ago