Math, asked by tiwariaastha192003, 1 year ago

If cos alpha + sin alpha equal to root 2 cos alpha then prove that cos alpha minus sin alpha equal to root 2 sin alpha

Answers

Answered by rishi5761
13

Hope it may help you...

Attachments:
Answered by mysticd
3

 We \:have  \: cos \alpha+sin \alpha= \sqrt{2} cos \alpha \:--(1)

/*On squaring both sides, we get */

 \implies (cos \alpha+sin \alpha )^{2}= (\sqrt{2} cos \alpha)^{2}

\implies cos^{2}\alpha + sin^{2} \alpha + 2sin \alpha cos \alpha = 2cos^{2} \alpha

 \implies sin^{2} \alpha = 2cos^{2}\alpha - cos^{2} \alpha - 2sin \alpha cos \alpha

 \implies sin^{2} \alpha = cos^{2}\alpha  - 2sin \alpha cos \alpha

 \implies sin^{2} \alpha + sin^{2} \alpha = cos^{2}\alpha+ sin^{2} \alpha  - 2sin \alpha cos \alpha

 \implies 2sin^{2} \alpha = ( cos \alpha - sin \alpha )^{2}

 \implies (\sqrt{2}sin \alpha )^{2} = ( cos \alpha - sin \alpha )^{2}

 \implies \sqrt{2} sin \alpha = cos\alpha - sin \alpha

 \implies  cos\alpha - sin \alpha = \sqrt{2} sin \alpha

•••♪

Similar questions