If cosα + cosβ = 0 = sinα + sin β, then prove that cos2α + cos2β = -2cos (α +β).
Answers
Answered by
1
Answer:
please mark me as brainlist hi hello how are you I'm fine thanks
Step-by-step explanation:
sinα+sinβ=a,cosα+cosβ=b
a2+b2=sin2α+sin2β+cos2α+cos2β+2(sinαsinβ+cosαcosβ)
a2+b2=2+2cos(α−β)
∴1+cos(α−β)=2a2+b2
ab=sinαcosα+sinαcosβ+sinβcosα+sinβcosβ
=sin(α+β)+2sin2α+sin2β
=sin(α+β)+sin(α+β)cos(α−β)
=sin(α+β)[1+cos(α−β)]
ab=sin(α+β)(2a2+b2)
∴sin(α+β)=a2+b
Similar questions