If cos(α – β) + cos(β – γ) + cos(γ – α) = −32, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ
Answers
Answer:
answer is A. B And D
Step-by-step explanation:
Correct option is
A
∑cosα=0
B
∑sinα=0
D
∑(cosα+sinα)=0
Given cos(β−γ)+cos(γ−α)+cos(α−β)=−
2
3
⟹cosβcosγ+sinβsinγ+cosγcosα+sinγsina+cosαcosβ+sinasinβ=−
2
3
⟹2(cosβcosγ+sinβsinγ+cosγcosα+sinγsina+cosαcosβ+sinasinβ)+1+1+2=0
⟹2(cosβcosγ+cosγcosα+cosαcosβ)+2(sinβsinγ+sinγsinα+sinαsinβ)+(sin
2
α+cos
2
α)
+(sin
2
β+cos
2
β)+(sin
2
γ+cos
2
γ)=0
⟹(cosα+cosβ+cosγ)
2
+(sinα+sinβ+sinγ)
2
=0
⟹∑cosα=0 and ∑sinα=0
⟹∑(cosα+sinα)=0
Hence, options 'A', 'B' and 'D' are correct.
Was this answer helpful?
(The question is a little incorrect. It should be -3/2 instead of -32)
cos(α – β) + cos(β – γ) + cos(γ – α) = −3/2
cos α cos β + sin α sin β + cos β cos γ + sin β sin γ + cos γ cos α + sin γ sin α = -3/2
2(cos α cos β + sin α sin β + cos β cos γ + sin β sin γ + cos γ cos α + sin γ sin α) + 1 + 1 + 1 = 0
2(cos α cos β + cos β cos γ + cos γ cos α) + 2(sin α sin β + sin β sin γ + sin γ sin α) + (sin²α+cos²α) + (sin²β+cos²β) + (sin²γ+cos²γ) = 0
{cos²α + cos²β + cos²γ + 2(cos α cos β + cos β cos γ + cos γ cos α) } + {sin²α + sin²β + sin²γ + 2(sin α sin β + sin β sin γ + sin γ sin α) } = 0
(cos α + cos β + cos γ)² + (sin α + sin β + sin γ)² = 0
Therefore, cos α + cos β + cos γ = sin α + sin β + sin γ = 0