If cos cos theta = 1, the value of sin ²theta + Sin ²theta is
Answers
Step-by-step explanation:
Let the breadth of the rectangle be x cm.
Then, the length of the rectangle is (x+9) cm.
So, area of rectangle = length x breadth =x(x+9)cm
2
Now, length of new rectangle =(x+9+3) cm =(x+12) cm and
breadth of new rectangle =(x+3) cm.
So, area of new rectangle = length × breadth =(x+12)(x+3)cm
2
According to the given condition,
(x+12)(x+3)=x(x+9)+84
⇒x
2
+12x+3x+36=x
2
+9x+84
⇒15x+36=9x+84
⇒15x−9x=84−36
⇒6x=48
⇒x=8
So, breadth of the rectangle is 8 cm and length
=8+9=17 cm.
Cos2theta value is
I.e, cox2x=cos(x+x)
The formula for cos(a+b) is cosa.cosb-sina.sinb
Here ,a=x & , b=x
Then , put the value,s of a&b
We have
Cos2x= cosx.cosx- sinx.sinx.
Cos2x= cos²x- sin²x .
Here we know that sin²x = 1- cos²x then put
Cos2x = cos²x- ( 1- cos²x) we have ,
= cos²x- 1+ cos²x
Cos2x= 2cos²x- 1 this is an other value for Cos double angle.
Cos2x+1=2cos²x it is also value for cos
±underroot cos2x+1/2 = cos²x
please drop some ❤️❤️❤️
please f-o-l-l-o-w m-e bro please