Math, asked by knightkinggamer98, 13 days ago

If cosƟ+cos2Ɵ =1,the value of sin2Ɵ+sin4Ɵ is
(a) -1

(b) 0

(c) 1

(d) 2​

Answers

Answered by IamIronMan0
58

Answer:

b

Step-by-step explanation:

Given

 \cos(x)  +  \cos(2x)  = 1 \\  \\  \implies \:  \cos(x)  + 2 \cos {}^{2}(x  )  - 1 = 1 \\  \\  let \:  \cos(x) = y \\ \\  \implies 2 {y}^{2}  + y - 1 = 0 \\ \implies 2 {y}^{2}  + 2y - y - 1 \\ \implies (2y - 1)(y + 1) = 0 \\   \\ \implies y =  \frac{1}{2}  \:  \: or \:  \:  - 1 \\  \\  \cos(x)  =  \frac{1}{2}  \:  \: or \:  \:  - 1 \\  \\ x =  \frac{\pi}{3}  \:  \: or \:  \: \pi

So now put value in required expression

when \: x =  \frac{\pi}{3}  \\  \\  \sin(2x)  +  \sin(4x)  \\  \\   =  \sin({2\pi \over3})  +  \sin( \frac{4\pi}{3} )  \\ \\   = \frac{ \sqrt{3} }{2}   +  \frac{ \sqrt{3} }{2}  =  \sqrt{3}

Or When x = π then

 \sin(2x)  +  \sin(4x)  \\  =  \sin(2\pi)  +  \sin(4\pi)  \\  = 0 + 0 = 0

Answered by pulakmath007
1

SOLUTION

GIVEN

 \sf{ \cos \theta +  { \cos}^{2}  \theta = 1}

TO CHOOSE THE CORRECT OPTION

\sf{   { \sin}^{2}  \theta  +{ \sin}^{4}  \theta } =

(a) - 1

(b) 0

(c) 1

(d) 2

EVALUATION

Here it is given that

 \sf{ \cos \theta +  { \cos}^{2}  \theta = 1}

Now

 \sf{ \cos \theta +  { \cos}^{2}  \theta = 1}

 \sf{ \implies \cos \theta  = 1 -  { \cos}^{2}  \theta }

 \sf{ \implies \cos \theta  =  { \sin}^{2}  \theta }

Now

 \sf{   { \sin}^{2}  \theta  +{ \sin}^{4}  \theta }

 \sf{  =   { \sin}^{2}  \theta  + {({ \sin}^{2}  \theta)}^{2}  }

 \sf{  =   { \sin}^{2}  \theta  + {( \cos  \theta)}^{2}  }

 \sf{  =   { \sin}^{2}  \theta  +  {\cos}^{2}   \theta}

 \sf{  =  1 }

FINAL ANSWER

Hence the correct option is (c) 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions