Math, asked by kritisharma123456, 1 year ago

if Cos inverse X + Cos inverse Y + Cos inverse Z is equals to pi
then prove that X square + Y square + Z square + 2 x y z is equal to 1

Answers

Answered by odedarahitesh6p7je14
30
Hope it helps please mark me brainalist
Attachments:
Answered by guptasingh4564
6

Hence Proved.

Step-by-step explanation:

Given,

cos^{-1} x +cos^{-1} y+cos^{-1} z=\pi then prove that x^{2} +y^{2} +z^{2} +2xyz=1

Let,

cos^{-1}x=\alphax=cos\alpha

cos^{-1} y=\betay=cos \beta

cos^{-1} z=\gammaz=cos \gamma

\alpha +\beta +\gamma=\pi

\alpha +\beta=\pi-\gamma

cos(\alpha +\beta)=cos(\pi-\gamma) by taking cos on both sides.

cos\alpha.cos\beta-sin\alpha.sin\beta=-cos\gamma  (∵cos(\pi-\theta)=-cos\theta)

By putting the value,

x.y-\sqrt{1-x^{2} } .\sqrt{1-y^{2} } =-z

x.y+z=\sqrt{1-x^{2} } .\sqrt{1-y^{2} }

x^{2} .y^{2} +z^{2} +2x.y.z=(1-x^{2} )(1-y^{2} )

x^{2} .y^{2} +z^{2} +2x.y.z=1-y^{2} -x^{2} +x^{2} .y^{2}

x^{2} +y^{2} +z^{2} +2x.y.z=1

Hence Proved.

Similar questions